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Study of the Radiation Properties of Overlapped,
Subarrayed Scanning Antennas

t. C

*1* 1. INTRODUCTION '

.. Radar systems of the future will require wideband electronically steered

antennas, with sidelcbes below -40 dB. /,1ecause the cost of a fully time-delay

steered array is excessive, the concept of overlapped subarray (with time delay

controlled at the subarray feed input) is attractive. This concept seems to have

originated with Rudge and Whithers, and Tang, and recently studied for limited

scan by Borgiotti. In this paper we will study the sidelobe and bandwidth prop-

* ertles of this system for large scan angles.

The basic configuration,-oheowNr/r-M7gare 14 uses a circular lens fed by a

hybrid matrix (with fixed time delays at the matrix output for subarray beam col-

limatlon). When an input port on the feed is excited, a distinct subarray distribu-

tion is produced on the output face (A rie--tof the lens. Therefore different time

delays can be applied to each subarray simply by applying different time delays to

each input port qa-p A The main array has phase shifters to produce a phase

tilt that scans the subarray patterns. "f .. -.

(Received for publication 15 November 1979)

1. Rudge, A. and Whithers, M. (1971) Proceedings of the IEE (UK) 118:857-863.

2. Tang, R. (1972) Proceedings of 1970 Phased Array Antenna Symposium
to Artech House, pp. 254-260.

3. Borgiotti, G. (1977) IEEE Transcript on Antennas & Propagation, AP-25:
232-243.
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Figure 1. System Geometry

2. PRINCIPLE OF OPERATION

Let us first consider the feed array in Figure 1; this can be either a Butler

matrix or a true time-delay system, such as a Rotman lens. For the moment we

shall approximate the radiating face by a continuous aperture distribution; in the

next section this idealization will be removed. If the pth input port is excited, the

field radiated by the feed at the angle u = sin 0 is

b

fp(u) f dy a(y) e iky(u-u, ()

-b

where a(y) is the excitation on face B of the feed, Up = p sin*, p is the angle of
th pthe center of the beam produced when the p input port is excited, k =2W/;k

t = wavelength and is defined as

8
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I True time delay feed

Y t/Xo Butler matrix

where X. is the wavelength at midband. In writing (1) we have assumed that the

field point (on the lens) lies in the Fraunhofer zone of the feed. The conditions

under which this approximation is applicable are discussed in Appendix A.

We next assume that the cylindrical lens shown in Figure 1 has equal line

lengths connecting the inner and outer faces. Also we write u = sin # = X/F,

up = 0 sin #p = PXp/F = P (p - 1/2) D/F, where D is the separation between the

beam centers (and consequently the subarray centers) on the lens, at X = X

Therefore the field distribution at the outer (flat) lens face when only the pth port

is excited is

1
fp(X) = bf di} a(nl) ei2wr R ( /D - p+3/2) ,(2)

-1

where n; = y/b, y = bD/X 0 F and R = X o/X. The result in (2) is the field distribution

of the pth subarray.

The system in Figure 1 has a large bandwidth because a different time delay,

Tp. is applied to each input port, and consequently to each subarray. When all

2M input ports (subarrays) are excited with a complex amplitude, Ip, and time

delay, Tp, the total field on the flat face of the lens is

M

AI f xe p (3)
E p p

p=-M+l

Finally, if we add a linear phase shift exp [- I 2rx/A 0 sin 0 1 so as to scan the

main beam of the system to the angle 0 we find for the radiated field

L/2

FM0 dx f(x) exp 21:- (R sin 0-sin 00 (4

-L/2

where the aperture distribution fAx) is given by (3). If we substitute (2) and (3)

into (4) and then perform the integration on x we find

I.
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1

F() = I e'i"T f d a(n) exp [-i2,vRp'i(p - 1/12))

p=-M+1 -1

sinc (11(yRn + RS - S 0 (5)

where S - D/X sin0, S = D/ 0 sin 00, C1 is a constant andI = L/D. We next

choose

wTp = 2w-T (p - 1/ 2 ) sin 0 0 = 2 v(p- 1/2) RS 0  (6)

and write Ip = fp exp [i2v(p - 1/2)So]. Then (5) becomes

M

F(S) = C1  E fp f d a(n) exp 1-i 2 w(p - 1/2) [(R - 1)So0 + R07,
p=-M+l -1

•sinc [1 (R + RS - S0 )i . (7)

When 71 - ao the principal contribution to the integral in (7) comes from

= -(RS - S0 )/,yR. Therefore

M

F(S) C2  1 fpexp {-21(p - 1/2)1(R - 1) So - 0 (R S - S o )

p=-M+l

FRS -S

If the feed is a true time-delay system (such as a Rotman lens) so that 0 1 1, and

we also assume & (-np) = a (n), then (8) can be rewritten as

[ns -Soi
F(S) - G[R(S - S)] a (S 9)

I.R
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G[R(S S M K M e12v(p -1I/2)R(S -S ) (10)
0 E ipp=-M+I

is the radiation pattern corresponding to the input distribution on the feed. There-

fore the system radiatioa pattern is simply the product of the unsquinted feed

pattern, G [R(S - S )], and the (squinted) distribution on face B of the feed array.

For example, let us suppose that face B is uniformly weighted, so that a(1) = I

if 1,1 :s I and a(n) - 0 for n > 1. Then the system radiation pattern at midband

is as shown in Figure 2. Note that

'<l (11)

is a necessary condition in order that there be no grating lobes at midband.

Unfortunately y < I is not always sufficient because when I is finite the pattern

a(S) has diffraction sidelobes which may be of considerable amplitude at the grating

lobe position, as we will see later.

GRATING G(s)
* . LOBE

I S

a(s)

F(S) S

So

Figure 2. Plots of F(...), G(...) and a(...) at Midband

I.
11
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We can estimate the bandwidth of the ideal system by realizing that the grat-

ing lobes of GIR(S - S0 )] occur at R(S - S o ) = K, where K = *1, ±2, etc. Then

because a (7) = 0 for InI > 1 it is clear from (9) that there will be no grating lobes

if

RS-S0 J >1 (12)

at values of S such that R(S - S 0 K, where K ±1, ±2 .... By using the
aforementioned condition we have found:

i) if S0 > 1 there are no grating lobes if

S -1 S +1I
R 0 (13)

SO  977-, -- _-O
0 0

so that the fractional bandwidth is

2(1 -- )S
Fract BW = S2 0O2 0 (14)

0

ii) if S0 < 1 there are no grating lobes if

So+ 1
R < 0 (15)

From (13) or (14) it is clear that the fractional bandwidth is largest wher

,= bD/)LoF is smallest. Another apparent advantage of designing the system so

that y is small is that we can then use the subarray pattern to cut off the sidelobes

of G[R(S -So)] as is shown (at midband in Figure 3). So why don't we do this?

There are several reasons: In a real system I = L/D is not infinite; because I is

finite the sidelobes of a(... ) are non-zero and in fact become quite large when

y1 << 10. In addition, suppose we chose 27 = B (where B is the null-to-null beam-

width of the main beam), so as to cut off all sidelobes in G at midband as shown in

Figure 3. When the frequency is moved off midband the subarray pattern will

truncate a portion of the main beam because G(... ) does not squint whereas a(...)

does. In fact it is readily shown that a necessary condition for the system to

operate at R = JXo/X without any main beam truncation is that

*This analysis assumes an infinitesimal grating lobe beamwldth; it is readily

extended to finite beamwidths.
Io
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where B is the null-to-null beamwidth of the main beam in S space.

Therefore we can't make y arbitrarily small. However, as we shall see

later, for a given I there is actually a value we can choose for - which is opti-

mum from the standpoint of both low sidelobes and wide bandwidth.

GRATING G s )

LOSE

I ~ :S I S
So-I so

aWs

So

-S

So

Figure 3. Use of a(...) to Truncate Sidelobes

S. DISCRETE SYSTEMS

In a practical system, face B of the feed array will consist of 2N discrete

elements, rather than the continuous distribution a(n) assumed in Section 2.

Furthermore, the lens (face C) will not be continuous but will also consist of dis-

crete elements, generally spaced slightly less than 1/2 wavelength apart. Finally,

the lens may not be in the Fraunhafer zone of the feed, and near-field effects must

This value of y is generally such that the subarray beams are non-orthogonal.
- This gives rise to a system reflection loss, and is discussed in Appendix B.

13
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considered. This general system is analyzed in Appendix A. We show there

that the latter two aforementioned effects are generally not significant, so that in

the system analysis which follows we will include only the discrete nature of the

feed, but will assume, as in Section 2, that the lens is continuous and lies in the

far field of the feed system.

If we assume that the feed elements radiate isotropically and have interele-

ment spacing 6, we can replace (1) by

N

fp(u) = _ an exp {ik(n - l/2)A(u - up (17)

n=-N+l

where an is the (complex) excitation of the nth element on face B. Upon proceed-

ing exactly as we did in the last section we then find that the system radiation

pattern F(S) is given by

M N

F(S) = C 3  Ip E an exp {-i2(p -1/2)[(R - 1)S0 +0 R(n - 1/2))

p=-M+I n= -N+1

• sinc{!i [RS -So + R(n - 1/2)]J , (18)

where

a D0o X F (19)

0

The quantity 7 defined in Section 2, is approximately equal to N'Y.

4. NUMERICAL RESULTS

We shall study (18) for the case when

+= 1 C+ [ (/M) Cos L (p - 1/2) (20)
ip [cos Or/2MJ o IMJ

I.
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In this case the summation on p is readily performed and (18) becomes

2N

F(S) = C4 E aj-N sLnc {i [RS - So + YoR(j - N - 1/2)] }

j=l

sinMO c0s [-cosM
oo . o (21)

where

4 P 2w(R - 1)S° + 7oR/3(j - N - 1/2)1 (22)
00

and C4 is a constant. We have evaluated (21) for numerous cases. We first per-

formed a parametric study of the effect on the radiation pattern of varying -yo and

1. In Figures 4 and 5 we show * the effects on the two highest sidelobe levels

when I = LID is varied butyo = &D/X0 F is held fixed. We note that the sidelobes

are relatively insensitive to the value of I and are lowest when I is of order 2M,

the number of subarray beams. This behavior is readily understood by calculating

the total lens illumination

M

fAx) = Ip f (x) e i T p (23)
p=-M+l

We find that the edge illumination on the lens is smallest for I slightly greater
than 2M, as is clear from Table 1. Typical aperture illuminations are shown in
Figures 6 and 7 for I = 16 and 20, respectively. Obviously, the illumination for

I = 16 is preferable to that for I = 20, because there are then no nulls in the

aperture distribution.

In Figures 8 and 9 we show the effect of varying yo = D/X F when is held
fixed. We note that the sidelobe levels are rather sensitive to the value chosen

for yo, and if we desire that all sidelobes (except the first) be well below -40 dB

ove'r a 30 percent band (fo * 0. 15 fo) we should choose 0. 050 !s - 0.06 for the
case when I = 16.365 and 2M = 16. By plotting sidelobe levels for a number of

different values of i and M we have found that y should be chosen approximately

equal to (0. 85/2M).

In all the results which follow it is assumed that the feed is a true time-delay
system, so .= 1

15
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Table 1. Lens Edge Illumination at Midband for 2M = 16,
O= 0.0525, a. = andI p given by (20)

I Edge Illumination (dB)

10 -10.2

12 -16.6

14 -28.6

15 -40.1

15.5 -50.0

16 -95.7

16.5 -62.5

17 -73.9

17.5 -64.3

18 -59.9

20 -59.9

In Figure 10 we show the amplitude of the two highest sidelobes when I 16.4

and -yo = 0.0525 and the beam is scanned to sin8 0 = 1.5 X/D(that is, S o = 3/2).

Shown on Figure 10 are the sidelobe levels for both a uniform illumination. an = 1,
and a cosine squared illumination on face B of the feed array. The purpose of

comparing these two cases is because Mailloux4 has suggested that a cosine

squared illumination, an, might give lower sidelobes than the uniform illumination.

As we can see from Figure 10, this is true near midband, but over a wide band-
width the uniform illumination on face B actually gives better sidelobe performance.

Another disadvantage of using a cosine squared (or other tapered illumination) on

face B is that, even at midband, this illumination produces non-orthogonal sub-

arrays, and this leads to a reflection loss at the feed input. This problem has

been studied in Appendix B and the results plotted in Figure 11. We note from

Figure 11 that when "yo = 0. 0625 (that is, 21N-y° = 2w) there is no orthogonality loss

for the uniform illumination, whereas the cosine squared illumination on face B
suffers more than a 4 dB reflection loss because of non-orthogonality. Therefore

for the parameters chosen there appears to be no advantage to using a tapered
distribution on face B, and an = 1 (for all n) appears to be the preferable illumina-

t ion.

In Figures 12 to 15 we show the actual radiation patterns for the case of a

beam scanned to So = (D/X ) sin 0 = 1.5 for the different relative frequencies

4. Mailloux, R. (1979) Digest of 1979 IEEE International Antennas and
Propagation Symposium, Seattle, Washington, pp 30-33.
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R = f/f 0. 85, 1.0, 1. 15 and 1. 25, respectively. From these figures we can

see the effect of the sidelobes of the illumination on face B in Figure 1. For

example, consider Figure 13. We note that the sidelobes begin dropping off in

accordance with the distribution applied to the input parts (face A) but then rise

again somewhat corresponding to diffraction sidelobes of the distribution, an, on

face B.

From Figure 15 we also note that for R = f/f = 1.25 the grating lobe at

S -S 0 -0. 8 begins appearing. At large values of R this grating lobe becomes

even larger. This is in approximate agreement with (13) which predicts grating

lobes for R > (S 0 + I)/(S 0 +Y ) = (S O + )/IS 0 +NN- o )= 1.29.

5. PHASE-ERROR SIDELOBES

Because, in addition to large bandwidth, we desire very low sidelobes. It is

important to consider the effect on sidelobe level of random phase errors within
2.the system. Let us assume that aA is the mean-square phase error at any of the

input parts on face A, aB is the mean-square phase error (due to line-length
B 2

errors, etc. in constructing the Rotman lens) on the elements of face B and a is

the mean-square phase error (due to line-length errors, etc. ) on the planar

(face C) of the lens. If these errors are small and uncorrelated, one from

another, the mean relative sidelobe level produced by these errors is as shown

in Appendix C

SL= 2 h() 2 ()+ a h (24)

OA A + B BO+ChC

The quantities hA, hB, hC are tabulated in Table 2, for parameters corresponding

to the results shown in Figures 12 to 15. Note that hA and hB are functions of 6,

whereas, as expected, hC is not. For the worst case (outside of the main beam)

fEq. (24) can be approximated by

SL - 0.Ioa2 + 0. 003602+ 0.077a2 (25)

We emphasize that (25) is a worst case result, and the coefficient of 2A for large
~values of 9 will be much less than 0. 11, as is evident from Table 2. From (25)

we see that if we desire all sidelobes beyond the first to be smaller than -50 dB
2 2 2222 5

we require 0 A 0 and a2 be such that 0. 11 2+0.00362 +0 2077ac 10 -

' B A .O 6 B OOC_ 0
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Table 2. Error-Sidelobe Coefficients for 2M 2N 16,
2K = 72, a 1.833., Q = 0.02164, g = 0.05144, e 0.833

sin 0 hA hB hc

0.05 0.094 0.066 0.077

0.1 0.094 0.015 0.077

0.15 0.094 0.00067 0.077

0.175 0.093 0.0023 0.077

0.20 0.11 10.0036 0.077

0.225 0.039 0. 0017 0.077

0.25 0. 00030 0.00022 0.077

0.3 0. 0004 0. 0016 0.077

0.4 0.000081 0.00097 0.077

0. 5 0.000037 0.00067 0.077

0.6 0.000023 0.00051 0.077

0.7 0.000017 0.00042 0.077

0.8 0.000014 0.00037 0.077

6. SUMMARY AND DISCUSSION

We have shown that it is possible to design an overlapped subarraying feed

(scanned in one dimension) which has excellent sidelobe performance over a rela-

tively wide bandwidth. The principal design parameters, once the number of

beams (subarrays) is chosen, are y, = AD/AF and I = L/D. We have found that

L should be chosen so that I is slightly larger than 2M, where 2M is the number

of overlapped subarrays (beams). We suggest I 1.025 (2M). The parameter 1 0

should be chosen as -o = 0. 85 /(2N).

In addition to the canonical 16 beam (subarray) system considered in this

paper we have also studied eight and 32 beam systems. For the 32 beam system

the results were much the same as presented here, but for the eight beam system

we found it much more difficult to obtain the low sidelobe levels desired.

As discussed in Appendix A, we also considered the case in whi,-h the lens lies

in the near field of the feed. The principal effect of including near-field effects

appears to be a filling in of some of the pattern nulls, but with relatively little

change in the sidelobe levels.

Finally, we should mention that there are numerous possible extensions of

this study, such as: (1) Scanning in two dimensions rather than only one; (2) Use

of a flat surface for the inner face of the lens rather than the cylindrical one we

24



considered; (3) The possibility suggested by Mailloux4 of using nulls in a(") to

produce moveable nulls in the main beam of the radiation pattern. The possiblity

is evident from Eq. (9), because, in the absence of finite lens width effects, the

radiation pattern is the product of the illumination on face B and the radiation

pattern corresponding to the input distribution on the feed ports.

In Figures 16 to 18 we show, briefly, the effect of nulls in a(n) on the radia-

tion pattern, F(S). The simplest method of putting a null in F(S) is to place a null

region in a(). According to (9), if a(q) = 0 over the region n = no - 6/2 to

n = no + 6/2, then the radiation pattern F(S) should have a null in S space of width

W -y6 (26)

centered, at midband, about S - S I = - rl o . As before S = (D/A ) sin 0 and

so  (D/k 0 ) sin 6o.

MAIN-BEAM NULL

-20

z

,--. -'I0
-0

'C

- .0 -o,1 0 0.8 1 .(
SV" S-S°0

Figure 16. Main Beam Null Produced by Setting a7 a8 0 for 2N

2M : 16, 1 16.4, -y°  0.0525, S 1 and R 1
0
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MAIN-BEAM NULL

-30
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-50
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-4T0

-I(0 -0.6 0,
VS-S

0

Figure 17. Main Beam Null Produced by Setting a 7 = = 0, a6 = ag
= 0.5, a 5 = alo = 0. 8 and All Other an = 1 for 2N = 2M 16, 1 = 16.4,
yo = 0.0525, So  1.5 and R = 1

When the elements on face B of the feed array are discrete, as in Section 4 we

replace y by Ny 0 and 6 by nl/N, where n, is the number of elements on face B with

excitations, an' set equal to zero and y0 was defined previously. Therefore, for a

discrete feed, the width of the null in S space is

W = yono , (27)

Eqs. (26) and (27) are ideal results; as we shall now see these null widths are not

achieved In practice because of finite lens-width effects.

In Figure 16 we show the radiation pattern at midband when a7 = a8 = 0, but

all the other fourteen elements on face B have a = 1. Upon comparing Figure 16
n

with Figure 13 we see that this resulis in a null which is -36 dB deep and located

at S - So = 0. 034. Unfortunately, we obtain this null at the expense of much higher

sidelobes. In particular, the second highest sidelobe is now -23 dB, as opposed to

26
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w 0

MAIN-BEAM NULL

Z
_44

C-

-0

-0.1 0 C
V= S-S°

0

Figure 18. Main Beam Null Produced by Setting a 7  a 8 - 0, a 6
a9  0.5, a 5  al 0 = 0.8 and all Other an = 1 for 2N 2M 16,
s o = 1. 5 o 0 . 0 5 2 5 , 1 16.4 and R : 0.975

-51 dB for the case when all a 1. We also note that the null is not nearly as
n

wide as predicted by the ideal theoretical result in (27). In fact, using (27) gives

a null width W - 2(0. 0525) = 0. 105, and this is very much greater than the actual

null width in Figure 15. The cause of the higher sidelobes and partial null filling

is, of curse, the diffraction effects produced by the finite lens width, l.

The null width and sidelobe levels can be improved somewhat by tapering the

excitations, an' rather than abruptly setting one or more a n equal to zero. In

Figure 17 we show the midband radiation pattern which results when a7 
= a 8 = 0,

a 6 = a 9  0.5, a 5 = al0 - 0.8 and all other an : 1. In this case there is a slight

null broadening and about a 3 dB lowering of the sidelobes. Clearly, a further

study of array illumination taper is required, but this will be deferred to a later

paper.

Finally, we should comment on the bandwidth of the null. By using the ideal

result in (f') we can readily show that the fractional null bandwidth is

27
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FBW 0 (28)

The result in (28) gives the bandwidth over which a point target, located at the

center of the null at midband, will remain within the null. For a discrete feed

array, with the illumination, an, on n 1 elements set equal to zero, (28) can be

rewritten as

FBW - 0 (29)

When the illumination, an- of two elements is set equal to zero, -'o 0. 0525 and

S = 1. 5 the fractional null-bandwidth, as predicted by (29), is 0. 14. This means0

that a target at null center at midband should remain with the null over a ± 7 per-

y. cent frequency change. Unfortunately, because of finite lens-width effects, this

also is very over-optimistic. In Figure 18 we show the radiation pattern for the

system corresponding to that in Figure 17, but with II - f/f 0 0.975 instead of

R = 1. We note that for R 1 the null was centered at S - S 0. 030, whereas
for R = 0. 975 the null is rentered at S - S = 0.069. (This shift does not occur

when S = 0). Furthermore, the null width is so small that the point S - S
O) 0

0. 034 is clearly not within the null. Therefore the realistic bandwidth is much

less than ±2. 5 percent, rather than the ideal result of ±7 percent. fAgain the

problem is caused by the finite lens size, L.

It is evident from the brief discussion above that although this system exhibits

some potential for placing moveable nulls in the main beam, further work will be

required to determine how large L and N must be, and what distributions of

illumination coefficients a will be required, in order to achieve nearly ideal nulln

widths, null bandwidths and low sidelobes.

I2
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Appendix A
Analysis of the General System

Here we shall analyze the general case when the lens (face C) is discrete, and

lies in the near field of the feed system. In the near zone the field radiated by the

feed when only the pth port is excited is

N l an Ii(U)

f (u) N n n exp 1-ikpn + iv.n ikynu (A1

n=-N+l Pn 1 1 2

where

21/2

Pn [F 2 2uFyn 2~
Pn = I 2 2Fn + Yn]

u B sin feed, - 1/2)6, L is the separation between the radiating elements on

face B of the feed, (u) is the radiation pattern on the nth element and V is the

phase of an. In writing (A l) is it implicitly assumed that pn > Xo.

Let us now expand p in a Taylor series about y 0, and then retain only up
to quadratic terms. The result is

t I3
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N2
fp(u) F 1/2  Ia In(u) exp -kF + ikynU i F L 0 - u2)

n=-N+1

+ iqn -ikYnup (A 2)

We can partially correct for the quadratic phase error in (A2) if we choose

= ky2/2F. Then (A2) becomes#n n

f pU) = F1/ 2 eikF E Ian! gnlu) exp ikyn(u - up) + 2F (A3)

n=-N+l

From (A3) it is clear that (A3) can be approximated by.(18) if kY2U 22F << 1. Upon

recalling that the maximum value of Yn is (N - 1/2)L and that the maximum value

of u is u = sin 40, where o is the angle subtended by the lens edge, we may re-

write this condition as
.9

lr(N - 112M 2 sin 2 0b < I (M4)
F

We now assume that (A4) does not necessarily hold, but that the fixed time

correction V = ky 2 /2F is applied to the feed, so that (Al) is the field incident on
n n

the inner face of the lens. The lens is assumed to consist of 2K discrete probes

which are separated by a distance OLi/2, where 0 _5 e 1, on the flat face of the

lens (plane) (in Figure 1). When Ip is given by (20), we obtain the radiated field

2K 2N ( vt) sin A14
F(O) E E a - -1/2 t s n

t=l n=1 -- / nN12 2 t 2l i 4n2

cos .n - cos [ 2Rp
M exp Rh - 2Rpn t + t(R sin 0 - sin 0.)

cos 4 n - cos -g

n M

(A 5)

where R =to/,x, g = Xo/F, vt =eg(t - K- 1/2), hn = Q(n - N 12), Q =!F,

hnt = (I vthn + hn)1/2, 'n 2r[(R a) sin 0° + ORhnI, and -,=  0o where D is

the subarray spacing on face C.
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If all the feed elements on face B are uniformly weighted, so that an  1, and

their element patterns are isotropic we can simplify (A5) to

2N 2K , sin MO coil 0 1-cos-
F()-E_1/2 siMn cosI

Pnt OnIt
n=l t=l 2M sin r Cos On C cos

ex R[h p- (A 6)

Eq. (a) has been evaluated for a case corresponding to the results shown in

Figures 12 to 15. If we choose 2M = 2N = 16, L = 30A° andl = L/D = 16.4then
wm D/X ° = 1. 833. Also, because -yo = AD/X 0 F = &Q = 0. 0525 then we automatically

have Q = 0.0525/a = 0. 02864. Next, g is chosen so that the outermost feed beam

has its center at = v/4. This gives g = Xo/F = 0. 05144. Finally, in Figures 12
to 15, So = (D/i o) sin 00 = asin 0 = 1.5. Therefore sin00 =0.818 and the scan

00
angle, 0o, is equal to 550. The results of this exact calculation are shown in

Figures 19 to 21. Observe that the sidelobe levels do not differ significantly from
those obtained using the approximate result in (21). The principal effect is the

filling in of some of the nulls because of the uncorrected quadratic errors in (Al).

0

-16

z

-0.& -O.Z O. L O. .

-1 -CAP -0.1 0.1 0.6 1
VSIN e

* Figure 19. Radiation Pattern Including Discrete
Lens and Near-Field Effects for 2N = 2M = 16,
a - = 1.833, Q = 0.02864, g = 0.05144 and R 0.85
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z

-- -0.2. 0.2 0.6
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Figure 20. Radiation Pattern Including Discrete Lens and
Near-Field Effects for 2N = 2M = 16, a = 1.833, Q = 0.02864
and R 1

* 0

-to

-40

I -kO

-0.6 -0.1 0.1 0.6

VSIN 0

Figure 21. Radiation Pattern Including Discrete Lens and
Near-Field Effects for 2N = 2M = 16, a .833, Q =0.02864,

. g= 0.05144, andR =1.15
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Appendix B

Effect of Subarray Non-Orthogonality

" In order to consider the orthogonality properties of the subarray beams, let

us consider the integral:

~1

jpq J du fp(u) f (u) , (BI)

-1

where f (u) is the pattern of the pth subarray beam. The pth and qth beams are
p

orthogonal if Jpq = 0 for p e q. Let us now substitute (17) into (BI). We obtain

3 2 an am exp i R R(n -1/2) u - (m 1/2)uq]

n=-N+l m=-N+l

• sinc [ R(n - m) , (B2)

, where Up -- (p - 1/2) 3D/F, sinc t sin t/t and R = to'. In order to study Jpq

let us assume R 1, and a \0/2. Then because slnc r (n - m) = 0 unless n -i

(B2) becomes
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N

q 2 anjI2 exp[-ti(n - l1) -q) • (B3)
n=-N+l

For the case when face B (in Figure 1) has the uniform weighting, Ian 1 1, we

get:

2 2sin F' (p -q)](4
pq si -D )

From (34) is it readily seen that Jpq = 0 for p ; q only if

ND

where n = 1, 2, 3.... Therefore, the beams are orthogonal when X = 2A only if

N, D, and F are chosen so that (B5) holds. The beams are not 6rthogonal when

X Oxo 0even if (B5) is satisfied.
When the beams are non-orthogonal, there is a system loss due to reflection

B-1at the input ports (even if the Butler matrix or Rotman lens is lossless). Stein,
has presented a theory for estimating this loss. He shows that the maximum
radiation efficiency is given by

17 1 (B6)

Omax

where Omax is the largest eigenvalue of the matrix [Rpq where

Rpq= S (B7)
pp

and Jpq is given by (B2). We have evaluated the maximum efficiency for the case

when =o/2 as the parameter

2W~o= 21NoF

B-i. Stein, S. (1962) IRE Transcript on Antennas & Propagation, AP-10:548-557.
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is varied. The results are presented in Figure 11 for the cases when an 1 and
Ianj = I and IanI = con2 '(n-N- 1/2)/2N. We note that, as expected, the ortho-

gonality loss for the uniform illumination is zero when the beams are mutually

orthogonal; this occurs when 2wNy o = 1, 2, 3N, etc. However, for 2Ny 0 4c we

see that there is considerable reflection loss because of non-orthogonality. This

conclusion holds for both the uniform and cosine square taper on face B. This

figure also shows that for a system with 2N-y° 0- I there is a 4 dB reflection loss

penalty paid by using a cosine squared array illumination as opposed to a uniform
weighting on face B of the feed. Therefore, unless the cosine squared illumination
gives considerably better sidelobe behavior in F(S), it is not a desirable weighting.
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Appendix C
Sidelobes Due to Phase Errors

Here we shall assess the effect of phase errors on the radiation pattern of the

system. Let us suppose that i.p)is the phase error on the input to the p thport
on race A of the feed, ipB (n) is the phase error (due to line-length errors, etc. in

the feed lens) of the nth element on face B of the feed and 0 (tM is the phase error
on the t thradiating element at face C of the feed due to line-length errors, etc. in

constructing the lens. We shall assume that these phase errors are all random

and uncorrelated, and that

*A(P) ()B (n)) =(kbC(t)) 0 (Cl1)

('AP 'PA(P')) = A 61 , (

(vt (n) B(n )) B a 6nn' (C3)

2

where 6 p, is the Kronecker delta and ()denotes an ensemble average. Thus we

have assumed that the phase fluctuations are completely uncorrelated from element

,~. 7,.39
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When the phase errors are included we find that, for uniform excitation on

face B(an = I) the field distribution at position xt on face C of the lens is given by

M N

fAxt) 2:= exp I i*A(p) - 12v(p - 1/2)(R - 1) So + 'Bn
p=-M+l n=-N+l

+ iky - , (C 5)

where u = (p - l/2)D/F and yn = (n - 1/2)&, and D, F and A were defined pre-

viously. In writing (C5) we have implicitly assumed that the lens is in the far field22
of the feed, so that the term kynu /2F in (A3) is negligible. For simplicity we

shall also assume that the beam is scanned to 6 = 0 so that S = 0. Then (C5)0 0

becomes

M N

f(xt) = + fM XfwA(p)+ WB(n)+ikYn(Fi- -up) (C6)
f. p=-M+l n=-N+l

The aperture distribution in (C6) produces a radiation pattern

F() = N I exp ik (xtsin8+ 'YntyUp

t=-K+l p=-M+l n=-N+l

+ *A (P) + iOB(n) + iOc(t)} , (C)

where x t = (t - 1/2)cko/2 is the location of the tth radiator on face C of the lens.

The ensemble averaged radiation pattern can be obtained by taking the ensemble

average of FF*, and then using the fact that O/A" V/B and OC are uncorrelated. This

gives

(IF12) E r. r, r. 1p P2 1n n Ip, exp Iik[p(t,n, p) -p(t',n',p')] I

t t' p pf n n' P

(expitIA(p) - WiA(p)])(exp [iVB(n) - iB(n')])

(expltC(t) - ii(t)]) , (Ca)

40

l( rllli i - / -*JJ...i.. " • . .. ........ 2 2.



where

p(t,n,p) =xt sin Xty- (C9)

We next assume all phase errors are small compared with unity, then expand

the exponentials in (C8) in a Taylor series and finally apply (Cl) (C4). The result

is

(IF 12 ) (1 _ 2~)(1 _ a2)(l _ a2)1 E L E I eikP t, n, p1 2
"A B C t np p

2 1 2 ei(tn p)i 2  2 ikp (t, n, p)1 2

p nt n P

+ a E I p e i k u ( t , n, p)l12 (C)

+ t pn

where

YnXt
u (t, n, P) = F - YnUp

Because the mean square phase errors are small we can neglect '2 a2 and a2

compared with unity in the first term in (CIO). Also, upon remembering the

relative sidelobe level due to phase errors is

SL SLA +SLB+SLC , (Cll)

where

22

SLA F r Ifp12 1 eilo(t, n, p) 2(C12)
o p t n

2

SLB = n EPt eilkp(tn,pP) 2 (C13)

22

aC 2it np) 2.

SLc C- , , , fp e i k(t, I , (C1,)
C Sc t n p
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The relative sidelobe levels have been numerically evaluated for the case
when e = 0. 833, 2K = 72, a = D/o= 1. 833, Q = L/F 0. 02864, etc. (the same

conditions as an Appendix A). The result obtained ts

SL =c a (Ot +a 2 h (9) +a 2 h (C16)A -A ) B B C C

where h A, h B and hCare given in Table 2.
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